Межотраслевой баланс. Модель межотраслевого баланса. Задача межотраслевого баланса

О планировании сказано достаточно. Независимо от нашего отношения к этому процессу, мы все время сталкиваемся с необходимостью сопоставлять свои силы со своими желаниями. И если в жизни одного-двух человек можно и ошибиться с планами, то на экономике государства, а то и целого союза держав, неверно соотнесенные затраты с прибылью могут сказаться катастрофически. Поэтому в современной экономике межотраслевой баланс со своей детализацией производства товаров и услуг занимает ведущее место.

межотраслевой баланс

Балансовая модель – что это?

Экономико-математическое моделирование систем и производственных процессов активно использует так называемые балансовые модели, основанные на сопоставлении и оптимизации имеющихся ресурсов. С точки зрения математики, балансовый метод предполагает построение системы уравнений, которые описывают условия равенства между производимой продукцией и потребностью в этих товарах.


Исследуемая группа чаще всего состоит из нескольких экономических объектов, часть продукции которых потребляется внутри, а часть выводится за ее рамки и воспринимается как «конечный продукт». Балансовые модели, которые используют понятие «ресурс», а не «продукт», дают возможность управлять оптимальным расходованием ресурсов.

балансовые модели

Что дает модель

Метод межотраслевого баланса – один из важнейших элементов экономической аналитики. Он представляет собой матрицу коэффициентов, отражающих расходование ресурсов по заданным направлениям использования. Для проведения расчетов составляется таблица, ячейки которой заполняются нормативами прямых затрат на изготовление единицы продукции.


В силу сложности системы использовать реальные показатели какого-то одного предприятия не представляется возможным. Поэтому коэффициенты (нормативы) рассчитываются на так называемую «чистую отрасль», т. е. такую, которая объединяет все производственные предприятия без оглядки на ведомственную подчиненность или форму собственности. Это создает существенные проблемы при подготовке информационной составляющей для модели экономических систем.

модель межотраслевого баланса

Нобелевская премия за модель

Впервые о необходимости найти баланс производства между разными отраслями предложили советские экономисты, изучавшие статистические показатели развития народного хозяйства за 1923-1924 годы. Первые предложения содержали лишь информацию о качестве связей между производственными отраслями и об использовании произведенной продукции.

Но реального практического применения эти идеи не нашли. Спустя несколько лет экономист В. В. Леонтьев сформулировал важность межотраслевых связей в экономике. Его работа была посвящена созданию математической модели, позволявшей не только анализировать текущее состояние экономики государства, но и моделировать возможные сценарии развития.

Межотраслевой баланс получил в мире название метода «затраты-выпуск». А в 1973 году ученый был удостоен Нобелевской премии по экономике за разработку прикладной модели межотраслевого анализа.

Как использовалась модель

Впервые модель межотраслевого баланса Леонтьев применил для анализа состояния экономики США. К тому времени теоретические постулаты приобрели форму реальных линейных уравнений. Этот расчет показал, что коэффициенты, предложенные учеными в качестве показателей взаимосвязей между отраслями, достаточно стабильны и постоянны.модели экономических систем


Во время Второй Мировой войны Леонтьевым был проанализирован межотраслевой баланс экономики гитлеровской Германии. По результатам этого исследования американские военные определили стратегически значимые цели. А по окончании войны качество и объем Ленд-лиза снова-таки определялся на базе информации, полученной через модель межотраслевого баланса Леонтьева.

В Советском Союзе такую модель строили 7 раз, начиная с 1959 года. Ученые предполагали, что на протяжении пяти лет экономические связи можно считать стабильными, поэтому и все условия считались статичными. Тем не менее, методика не получила широчайшего распространения, т. к. на взаимосвязи производственных отраслей в большей степени влияла политическая конъюнктура. Реальные же экономические связи рассматривались как второстепенные.

Суть понятия

Модель межотраслевого баланса – это определение взаимосвязей между выпуском продукции в одной отрасли и затратами и потреблением товаров всех отраслей, задействованных в производстве этой продукции. Например, для добычи угля необходимы стальные инструменты; в то же время для выплавки стали нужен уголь. Так вот, задача межотраслевого баланса заключается в том, чтобы найти такое соотношение угля и стали, при котором экономический результат будет максимальным.

В более широком понимании можно говорить, что по результатам построенной модели можно определять эффективность производства вообще, находить оптимальные методы ценообразования и выявлять наиболее значимые факторы экономического роста. Кроме того, этот метод позволяет заниматься прогнозированием.

Основные задачи

  • Структуризация процессов воспроизводства, исходя из материально-вещественного состава отраслевых ресурсов.
  • Иллюстрация процессов выпуска продукции и ее распределения.
  • Детальное исследование производственного процесса, создания товаров и услуг, накопления доходов на уровне отраслей экономики.
  • Оптимизация выявленных существенных факторов производства.

Для метода «затраты-выпуск» определены аналитическая и статистическая функции. Аналитическая позволяет прогнозировать динамические процессы развития отраслей и экономики в целом; моделировать ситуации, изменяя различные данные и показатели. Статистическая функция обеспечивает проверку согласованности информации, поступающей из различных источников – от предприятий, региональных бюджетов, налоговых служб и т. д.

Математический вид модели

С точки зрения математики, балансовая модель – это система дифференцированных уравнений (и не всегда линейных), которые отображают условия равновесия между произведенной в отрасли совокупной продукцией и потребностью в ней.

Модели экономических систем чаще всего представляются в виде таблицы (см. рис.). В ней совокупный продукт разделяется на 2 части: внутренний (промежуточный) и конечный. Народное хозяйство рассматривается как система из n чистых отраслей, каждая из которых выступает в роли производящей и потребляющей.

модель межотраслевого баланса

Квадранты

Межотраслевой баланс Леонтьева разделен на четыре части (квадранта). Каждый квадрант (на рис. они обозначены цифрами 1-4) имеет свое экономическое содержание. В первом отображаются межотраслевые материальные связи – это своего рода шахматка. Коэффициенты, расположенные на пересечении строк и столбцов, обозначаются XY и содержат информацию о потоке продукции между отраслями. Х и Y – номера отраслей, которые производят и потребляют продукцию. Обозначение х23, например, следует трактовать так: стоимость средств производства, выпущенных в отрасли 2 и потребленных в отрасли 3 (материальные затраты). Сумма всех элементов первого квадранта представляет собой годовой фонд возмещения материальных затрат.

Второй квадрант представляет собой совокупность конечной продукции всех производственных отраслей. Конечным называется продукт, который выходит за рамки производственной сферы в область конечного потребления и накопления. Развернутая схема баланса иллюстрирует направления использования такого товара: общественное и личное потребление, накопление, возмещение и экспорт.

Третий квадрант описывает национальный доход. Он представляет собой сумму чистой продукции (оплата труда и чистый доход отраслей) и фонда возмещения. А в четвертом отображена информация о конечном распределении. Он находится на пересечении столбцов второго и строк третьего квадрантов. Эта информация необходима для понимания формирования системы доходов и расходов населения страны, источников финансирования, затрат непроизводственной сферы и т. д.

Отметим, что общий итог второго, третьего и четвертого квадрантов (каждого в отдельности) должен быть равен созданному за год продукту.

межотраслевой баланс леонтьева

Система уравнений

Несмотря на то что валовый общественный продукт формально не входит в состав ни одной из вышеперечисленных частей, он все же присутствует в балансе. Столбец, который находится справа от второго квадранта, и строка, расположенная под третьим, отображают валовый общественный продукт. Информация, полученная из названных элементов, позволяет проверить правильность заполнения всего баланса. Кроме того, с ее помощью можно составить экономико-математическую модель.

Обозначив валовый продукт отрасли через Х с индексом, соответствующим номеру этой отрасли, можно сформулировать два основных соотношения. Экономический смысл первого уравнения сводится к следующему: сумма материальных затрат любой ветви хозяйства и ее чистой продукции равен валовому продукту описываемой отрасли (столбцы).

Второе уравнение межотраслевого баланса показывает, что сумма материальных затрат потребляющих какой-то товар и конечный продукт той или иной сферы представляют собой валовую продукцию отрасли (строки баланса).

Конечный вид системы уравнений

С учетом всех названных формул, в модель вводятся такие понятия:

  • матрица коэффициентов прямых затрат А = {ау};
  • вектор валовой продукции Х (столбец);
  • вектор конечной продукции У (столбец).

уравнение межотраслевого баланса

Модель в матричной форме будет описана соотношением:

X = AX + Y.

Осталось только напомнить, что баланс составляется как в натуральных величинах, так и в денежном измерении.

Региональный валовый продукт: структура, объем, расчет
Региональный валовый продукт отражает уровень экономического развития отдельных регионов страны, что позволяет принимать верные управленческие решения за счет детализированного анализа ситуации. ВРП служит основой при перераспределении средств из ...
далее
Экономико-математические способы и моделирование
Экономико-математические методы в настоящее время широко используются в экономике и являются важным направлением в совершенствование анализа деятельности хозяйствующих субъектов, а также их подразделений. Этого можно достигнуть за счет уменьшения ...
далее
Дмитрий Леонтьев: краткая биография, книги
Всегда в отличной форме, с красивой улыбкой, с добрыми глазами. Он всегда поднимет настроение и найдет, что сказать тогда, когда, казалось бы, и нечего сказать. Именно таким в глазах миллионов представляется Дмитрий Леонтьев – мудрый психолог и ...
далее
Задача с решением по экономике. Формулы по экономике для решения задач
Как решать задачи по экономике? Мы рассмотри примеры решения решения задач по экономике труда, предприятия, а также обсудим другие отрасли этой науки.
далее
Задача с решением по экономике. Формулы по экономике для решения задач
Дифференциальные уравнения первого порядка - специфические особенности решения и примеры
Одной из самых сложных и непонятных тем вузовской математики становятся интегрирование и дифференциальное исчисление. Необходимо знать и разбираться в этих понятиях, а также уметь их применять. Многие вузовские технические дисциплины завязаны на дифференциалах и интегралах.
далее
Дифференциальные уравнения первого порядка - специфические особенности решения и примеры
Классификация моделей управления. Классификация экономико-математических моделей
Рассмотрим классификацию моделей управления, их особенности, принцип построения, специфику применения.
далее
Классификация моделей управления. Классификация экономико-математических моделей