Биологическое окисление. Окислительно-восстановительные реакции: примеры

Без энергии невозможно существование ни одного живого существа. Ведь каждая химическая реакция, любой процесс требуют ее присутствия. Любому человеку легко понять это и почувствовать. Если весь день не употреблять пищу, то уже к вечеру, а возможно, и раньше, начнутся симптомы повышенной усталости, вялости, сила значительно уменьшится.

биологическое окисление

Каким же способом разные организмы приспособились к получению энергии? Откуда она берется и какие процессы при этом происходят внутри клетки? Попробуем разобраться в данной статье.

Получение энергии организмами

Каким бы способом ни потребляли существа энергию, в основе всегда лежат ОВР (окислительно-восстановительные реакции). Примеры можно привести разные. Уравнение фотосинтеза, который осуществляют зеленые растения и некоторые бактерии − это тоже ОВР. Естественно, что процессы будут отличаться в зависимости от того, какое живое существо имеется в виду.


Так, все животные − это гетеротрофы. То есть такие организмы, которые не способны самостоятельно формировать внутри себя готовые органические соединения для дальнейшего их расщепления и высвобождения энергии химических связей.

Растения, напротив, являются самым мощным продуцентом органики на нашей планете. Именно они осуществляют сложный и важный процесс под названием фотосинтез, который заключается в формировании глюкозы из воды, углекислого газа под действием специального вещества − хлорофилла. Побочным продуктом является кислород, который является источником жизни для всех аэробных живых существ.

Окислительно-восстановительные реакции, примеры которых иллюстрируют данный процесс:

  • 6CO2 + 6H2O = хлорофилл = C6H10O6 + 6O2 ;

или

  • диоксид углерода + оксид водорода под воздействием пигмента хлорофилла (фермент реакции) = моносахарид + свободный молекулярный кислород.

Также существуют и такие представители биомассы планеты, которые способны использовать энергию химических связей неорганических соединений. Их называют хемотрофы. К ним относят многие виды бактерий. Например, водородные микроорганизмы, окисляющие молекулы субстрата в почве. Процесс происходит по формуле: 2Н2+02=2Н20.


окислительно восстановительные реакции примеры

История развития знаний о биологическом окислении

Процесс, который лежит в основе получения энергии, сегодня вполне известен. Это биологическое окисление. Биохимия настолько подробно изучила тонкости и механизмы всех стадий действия, что загадок почти не осталось. Однако так было не всегда.

Первые упоминания о том, что внутри живых существ происходят сложнейшие преобразования, которые являются по природе химическими реакциями, появились примерно в XVIII веке. Именно в это время Антуан Лавуазье, знаменитый французский химик, обратил свое внимание на то, как схожи биологическое окисление и горение. Он проследил примерный путь поглощаемого при дыхании кислорода и пришел к выводу, что внутри организма происходят процессы окисления, только более медленные, чем снаружи при горении различных веществ. То есть окислитель − молекулы кислорода − вступают в реакцию с органическими соединениями, а конкретно, с водородом и углеродом из них, и происходит полное превращение, сопровождающееся разложением соединений.


Однако, хоть данное предположение по сути своей вполне реально, непонятными оставались многие вещи. Например:

  • раз процессы схожи, то и условия их протекания должны быть идентичными, но окисление происходит при низкой температуре тела;
  • действие не сопровождается выбросом колоссального количества тепловой энергии и не происходит образования пламени;
  • в живых существах не менее 75-80% воды, но это не мешает «горению» питательных веществ в них.

Чтобы ответить на все эти вопросы и понять, что на самом деле представляет собой биологическое окисление, понадобился не один год.

Существовали разные теории, которые подразумевали важность наличия в процессе кислорода и водорода. Самые распространенные и наиболее успешные были:

  • теория Баха, именуемая перекисной;
  • теория Палладина, основывающаяся на таком понятии, как «хромогены».

В дальнейшем было еще много ученых, как в России, так и других странах мира, которые постепенно вносили дополнения и изменения в вопрос о том, что же такое биологическое окисление. Биохимия современности, благодаря их трудам, может рассказать о каждой реакции этого процесса. Среди самых известных имен в этой области можно назвать следующие:

  • Митчелл;
  • С. В. Северин;
  • Варбург;
  • В. А. Белицер;
  • Ленинджер;
  • В. П. Скулачев;
  • Кребс;
  • Грин;
  • В. А. Энгельгардт;
  • Кейлин и другие.

виды биологического окисления

Виды биологического окисления

Можно выделить два основных типа рассматриваемого процесса, которые протекают при разных условиях. Так, самый распространенный у многих видов микроорганизмов и грибков способ преобразования получаемой пищи − анаэробный. Это биологическое окисление, которое осуществляется без доступа кислорода и без его участия в какой-либо форме. Подобные условия создаются там, куда нет доступа воздуху: под землей, в гниющих субстратах, илах, глинах, болотах и даже в космосе.

Этот вид окисления имеет и другое название − гликолиз. Он же является одной из стадий более сложного и трудоемкого, но энергетически богатого процесса − аэробного преобразования или тканевого дыхания. Это уже второй тип рассматриваемого процесса. Он происходит во всех аэробных живых существах-гетеротрофах, которые для дыхания используют кислород.

Таким образом, виды биологического окисления следующие.

  1. Гликолиз, анаэробный путь. Не требует присутствия кислорода и заканчивается разными формами брожения.
  2. Тканевое дыхание (окислительное фосфорилирование), или аэробный вид. Требует обязательного наличия молекулярного кислорода.

биологическое окисление биохимия

Участники процесса

Перейдем к рассмотрению непосредственно самих особенностей, которые заключает в себе биологическое окисление. Определим основные соединения и их аббревиатуры, которые в дальнейшем будем использовать.

  1. Ацетилкоэнзим-А (ацетил-КоА) − конденсат щавелевой и уксусной кислоты с коферментом, формирующийся на первой стадии цикла трикарбоновых кислот.
  2. Цикл Кребса (цикл лимонной кислоты, трикарбоновых кислот) − ряд сложных последовательных окислительно-восстановительных преобразований, сопровождающихся высвобождением энергии, восстановлением водорода, образованием важных низкомолекулярных продуктов. Является главным звеном ката- и анаболизма.
  3. НАД и НАД*Н − фермент-дегидрогеназа, расшифровывающийся как никотинамидадениндинуклеотид. Вторая формула − это молекула с присоединенным водородом. НАДФ - никотинамидадениндинуклетид-фосфат.
  4. ФАД и ФАД*Н − флавинадениндинуклеотид - кофермент дегидрогеназ.
  5. АТФ − аденозинтрифосфорная кислота.
  6. ПВК − пировиноградная кислота или пируват.
  7. Сукцинат или янтарная кислота, Н3РО4 − фосфорная кислота.
  8. ГТФ − гуанозинтрифосфат, класс пуриновых нуклеотидов.
  9. ЭТЦ − электроно-транспортная цепь.
  10. Ферменты процесса: пероксидазы, оксигеназы, цитохромоксидазы, флавиновые дегидрогеназы, различные коферменты и прочие соединения.

Все эти соединения являются непосредственными участниками процесса окисления, которое происходит в тканях (клетках) живых организмов.

Стадии биологического окисления: таблица

СтадияПроцессы и значение
ГликолизСуть процесса заключается в бескислородном расщеплении моносахаридов, которое предшествует процессу клеточного дыхания и сопровождается выходом энергии, равным двум молекулам АТФ. Также образуется пируват. Это начальная стадия для любого живого организма гетеротрофа. Значение в образовании ПВК, который поступает на кристы митохондрий и является субстратом для тканевого окисления кислородным путем. У анаэробов после гликолиза наступают процессы брожения разного типа.
Окисление пируватаЭтот процесс заключается в преобразовании ПВК, образовавшейся в ходе гликолиза, в ацетил-КоА. Он осуществляется при помощи специализированного ферментного комплекса пируватдегидрогеназы. Результат − молекулы цетил-КоА, которые вступают в цикл Кребса. В этом же процессе осуществляется восстановление НАД до НАДН. Место локализации − кристы митохондрий.
Распад бета-жирных кислотЭтот процесс осуществляется параллельно с предыдущим на кристах митохондрий. Суть его в том, чтобы переработать все жирные кислоты в ацетил-КоА и поставить его в цикл трикарбоновых кислот. При этом также восстанавливается НАДН.
Цикл Кребса

Начинается с превращения ацетил-КоА в лимонную кислоту, которая и подвергается дальнейшим преобразованиям. Одна из важнейших стадий, которые включает в себя биологическое окисление. Данная кислота подвергается:

  • дегидрированию;
  • декарбоксилированию;
  • регенерации.

Каждый процесс совершается несколько раз. Результат: ГТФ, диоксид углерода, восстановленная форма НАДН и ФАДН2. При этом ферменты биологического окисления свободно располагаются в матриксе митохондриальных частиц.

Окислительное фосфорилирование

Это последняя стадия преобразования соединений в организмах эукариот. При этом происходит преобразование аденозиндифосфата в АТФ. Энергия, необходимая для этого, берется при окислении тех молекул НАДН и ФАДН2, которые сформировались на предыдущих стадиях. Путем последовательных переходов по ЭТЦ и понижением потенциалов происходит заключение энергии в макроэргические связи АТФ.

Окисление – это что за процесс?
В данное статье мы рассмотрим явление окисления. Это многосоставное понятие, которое фигурирует в различных областях науки, например, биологии и химии. Также мы ознакомимся с разнообразием данного процесса и его сутью.
далее
Полное окисление глюкозы. Реакция окисления глюкозы
В данной статье рассмотрим, как происходит окисление глюкозы. Углеводы представляют собой соединения полигидроксикарбонильного типа, а также их производные. Характерные признаки – наличие альдегидных или кетонной групп и не меньше двух групп ...
далее
Дыхательная цепь: функциональные ферменты
Дыхательная цепь – это последовательность специфических структур, которые расположены на внутренней мембране митохондрий и служат для образования АТФ. Аденозинтрифосфат является универсальным источником энергии и способен аккумулировать в себе от 80 ...
далее
Макроэргическая связь и соединения. Какие связи называются ...
Любое наше движение или мысль требуют от организма затрат энергии. Этой энергией запасается каждая клетка тела и накапливает ее в биомолекулах с помощью макроэргических связей.
далее
Примеры окислительно-восстановительных реакций с решением. ОВР: схемы
Вопросы, касающиеся окислительно-восстановительных процессов, включены в тестовые задания, предлагаемые в 9 и 11 классах общеобразовательных школ. Для того чтобы они не вызывали у школьников затруднений, предлагаем алгоритм действий.
далее
Фосфорилирование окислительное: механизм. Где происходит окислительное фосфорилирование
Ведущая роль энергии на метаболическом пути зависит от процесса, суть которого - фосфорилирование окислительное. Питательные вещества окисляются, образуя при этом энергию, которую организм запасает в митохондриях клеток как АТФ.
далее
Фосфорилирование окислительное: механизм. Где происходит окислительное фосфорилирование
Орнитиновый цикл: реакции, схема, описание, метаболические нарушения
Подавляющая часть азота поступает в организм в составе белков. В процессе метаболизма аминокислоты разрушаются, образуется аммиак как конечный продукт обменных процессов. Орнитиновый цикл – это несколько последовательных реакций, главная задача которых состоит в детоксикации NH3 с помощью его перевода в мочевину.
далее
Орнитиновый цикл: реакции, схема, описание, метаболические нарушения
Обеспечение клеток энергией. Источники энергии
Из клеток состоят все живые организмы, за исключением вирусов. Они обеспечивают все необходимые для жизни растения или животного процессы. Клетка и сама может быть отдельным организмом. И разве может такая сложная структура жить без энергии? Конечно, нет. Так как же происходит обеспечение клеток энергией?
далее
Обеспечение клеток энергией. Источники энергии
Знаете ли вы что это - брожение? Это очень полезный процесс!
Сегодня мы хотим поговорить с вами о том, что такое брожение. Это тема одновременно простая и сложная, но мы ограничимся лишь основными тезисами и определениями, что возможно даст пищу для размышлений и дальнейших исследований.
далее
Знаете ли вы что это - брожение? Это очень полезный процесс!
Гликолиз. И общие сведения окисление глюкозы
В этой статье мы подробно рассмотрим аэробный гликолиз, его процессы, разберем стадии и этапы. Ознакомимся с анаэробным окислением глюкозы, узнаем об эволюционных видоизменениях данного процесса и определим его биологическое значение.
далее
Гликолиз. И общие сведения окисление глюкозы