Выражение, не имеющее смысла: примеры в математике

Выражение – это самый широкий математический термин. По существу, в этой науке из них состоит все, и все операции проводятся тоже над ними. Другой вопрос, что в зависимости от конкретного вида применяются совершенно разнообразные методы и приемы. Так, работа с тригонометрией, дробями или логарифмами – это три различных действия. Выражение, не имеющее смысла, может относится к одному из двух видов: числовому или алгебраическому. А вот что означает это понятие, как выглядит его пример и прочие моменты будут рассмотрены далее.
выражение не имеющее смысла

Числовые выражения

Если выражение состоит из чисел, скобок, плюсов-минусов и остальных знаков арифметических действий, его смело можно называть числовым. Что довольно логично: стоит только еще разок взглянуть на первый названный его компонент.


Числовым выражением может быть что угодно: главное, чтобы в нем не было букв. А под "чем угодно" в данном случае понимается все: от простой, стоящей одиноко, самой по себе, цифры, до огромного их перечня и знаков арифметических действий, требующих последующего вычисления конечного результата. Дробь – это тоже числовое выражение, если в ней нет всяких a, b, c, d и т.д., ведь тогда это совершенно другой вид, о котором будет рассказано чуть позже.

Условия для выражения, которое не имеет смысла

Когда задание начинается со слова "вычислить", можно говорить о преобразовании. Штука в том, что это действие не всегда целесообразно: в нем не то чтобы сильно нуждаются, если на передний план выходит выражение, не имеющее смысла. Примеры бесконечно удивительны: иногда, чтобы понять, что оно-то нас и настигло, приходится долго и нудно раскрывать скобки и считать-считать-считать...


выражение не имеющее смысла примеры

Главное, что нужно запомнить: не имеет смысла то выражения, чей конечный результат сводится к запретному в математике действию. Если уж совсем по-честному, то тогда бессмысленным становится само преобразование, но для того, чтобы это выяснить, приходится его для начала выполнить. Такой вот парадокс!

Самое знаменитое, но от того не менее важное запретное математическое действие – это деление на ноль.

Потому вот, например, выражение, не имеющее смысла:

(17+11):(5+4-10+1).

Если при помощи нехитрых вычислений свести вторую скобку к одной цифре, то она и будет нулем.

По такому же принципу "почетное звание" дается и этому выражению:

(5-18):(19-4-20+5).

Алгебраические выражения

Это то же самое числовое выражение, если в него добавить запретные буквы. Тогда оно и становится полноценным алгебраическим. Оно также может быть всех размеров и форм. Алгебраическое выражение – понятие более широкое, включающее в себя предыдущее. Но был смысл начинать разговор не с него, а с числового, чтобы было понятнее и разобраться было легче. Ведь имеет ли смысл выражение алгебраическое – вопрос не то чтобы очень сложный, но имеющий больше уточнений.

выражение не имеющее смысла 7 класс

Почему так?

Буквенное выражение, или выражение с переменными – это синонимы. Первый термин объяснить просто: ведь оно, в конце концов, содержит в себе буквы! Второй тоже не загадка века: вместо букв можно подставлять разные числа, вследствие чего значение выражения будет меняться. Нетрудно догадаться, что буквы в данном случае и есть переменные. По аналогии, числа – это постоянные.


И тут мы возвращаемся к основной тематике: что такое выражение, не имеющее смысла?

Примеры алгебраических выражений, не имеющих смысла

Условие для бессмысленности алгебраического выражения - аналогичное, как и для числового, с одним лишь только исключением, а если быть точнее, дополнением. При преобразовании и вычислении конечного результата приходится учитывать переменные, поэтому вопрос ставится не как "какое выражение не имеет смысла?", а "при каком значении переменной это выражение не будет иметь смысла?" и "есть ли такое значение переменной, при котором выражение потеряет смысл?"

Например, (18-3):(a+11-9).

Вышеприведенное выражение не имеет смысла при a равном -2.

имеет ли смысл выражение

А вот насчет (a+3):(12-4-8) можно смело сказать, что это выражение, не имеющее смысла при любых a.

Точно так же, какое b ни подставишь в выражение (b - 11):(12+1), оно по-прежнему будет иметь смысл.

Типовые задачи по теме "Выражение, не имеющее смысла"

7 класс изучает эту тему по математике в числе прочих, и задания по ней встречаются нередко как непосредственно после соответствующего занятия, так и в качестве вопроса "с подвохом" на модулях и экзаменах.

Вот почему стоит рассмотреть типовые задачи и методы их решения.

Пример 1.

Имеет ли смысл выражение:

(23+11):(43-17+24-11-39)?

Решение:

Необходимо произвести все вычисление в скобках и привести выражение к виду:

34:0

Ответ:

Конечный результат содержит деление на ноль, следовательно, выражение не имеет смысла.

Пример 2.

Какие выражения не имеют смысла?

1) (9+3)/(4+5+3-12);

2) 44/(12-19+7);

3) (6+45)/(12+55-73).

Решение:

Следует вычислить конечное значение для каждого из выражений.

Ответ: 1; 2.

какое выражение не имеет смысла

Пример 3.

Найти область допустимых значений для следующих выражений:

1) (11-4)/(b+17);

2) 12/ (14-b+11).

Решение:

Область допустимых значений (ОДЗ) - это все те числа, при подставлении которых вместо переменных выражение будет иметь смысл.

То есть задание звучит как: найти значения, при которых не будет деления на ноль.

Ответ:

1) b є (-∞;-17) & (-17; + ∞), или b>-17 & b<-17, или b≠-17, что значит - выражение имеет смысл при всех b, кроме -17.

2) b є (-∞;25) & (25; + ∞), или b>25 & b<25, или b≠25, что значит - выражение имеет смысл при всех b кроме 25.

Пример 4.

При каких значениях нижеприведенное выражение не будет иметь смысла?

(y-3):(y+3)

Решение:

Вторая скобка равна нулю при игреке равном -3.

Ответ: y=-3

Пример 4.

Какие из выражений не имеют смысла только при x = -14?

1) 14:(х - 14);

2) (3+8х):(14+х);

3) (х/(14+х)):(7/8)).

Ответ:

2 и 3, так как в первом случае, если подставить вместо х = -14, то вторая скобка приравняется -28, а не нулю, как звучит в определении не имеющего смысла выражения.

Пример 5.

Придумайте и запишите выражение, не имеющее смысла.

Ответ:

18/(2-46+17-33+45+15).

Алгебраические выражения с двумя переменными

Несмотря на то что у всех выражений, которые не имеют смысла, одна суть, существуют разные уровни их сложности. Так, можно сказать, что числовые – это примеры простые, ведь они легче, чем алгебраические. Трудности для решения добавляет и количество переменных у последних. Но и они не должны сбивать с толку своим видом: главное – помнить общий принцип решения и применять его вне зависимости от того, похож ли пример на типовую задачу или имеет какие-то неизвестные дополнения.

какие выражения не имеют смысла

Например, может возникнуть вопрос, как решить такое задание.

Найти и записать пару чисел, являющихся недопустимыми для выражения:

(x3 - x2y3 + 13x - 38y)/(12x2 - y).

Варианты ответов:

1) 3 и 107;

2) 1 и -12;

3) 2 и 48;

4) -2 и 24;

5) -3 и 108.

Но на самом деле оно только выглядит страшным и громоздким, потому что на деле содержит в себе то, что уже давно известно: возведение чисел в квадрат и куб, некоторые арифметические действия, такие как деление, умножение, вычитание и сложения. Для удобства, между прочим, можно привести задачу к дробному виду.

Числитель у получившейся дроби не радует: (x3 - x2y3 + 13x - 38y). Это факт. Зато есть другой повод для счастья: его-то для решения задания трогать даже не понадобится! Согласно определению, рассмотренному ранее, делить нельзя на ноль, а что именно на него будет делиться, совершенно неважно. Потому оставляем это выражение в неизменном виде и подставляем пары чисел из данных вариантов в знаменатель. Уже третий пункт идеально вписывается, превращая небольшую скобочку в ноль. Но останавливаться на этом – плохая рекомендация, ведь подойти может еще что-нибудь. И вправду: пятый пункт тоже неплохо вписывается и подходит условию.

Записываем ответ: 3 и 5.

В заключение

Как видно, эта тема очень интересная и не особо сложная. Разобраться в ней не составит труда. Но все-таки отработать пару примеров никогда не помешает!

Слова с двойным значением: смысл, определение и примеры
В этой статье рассказывается о том, что такое слова с двойным значением (многозначные слова). Приводятся некоторые из них в качестве примеров. Поясняются их прямые (буквальные) и переносные (фигуральные) значения. Объясняется, в чем разница между ...
далее
Узнаем как понять алгебру: мыслим логически
Если вы учитесь в школе и не знаете, как понять алгебру, то не отчаивайтесь. Сегодня мы разберемся, как постичь эту науку.
далее
Плебисцит. Значение слова
Плебисцит – это что такое? Данный термин не характерен для обозначения всенародного голосования, проводимого в нашей стране. Именно поэтому он вызывает затруднения, когда необходимо дать ему характеристику. Более привычным для нас является термин ...
далее
Разбираемся в видах человеческой хитрости: что означает «льстят»?
Иной раз, услышав какое-то слово, задумываешься, что оно означает на самом деле? Возьмем, к примеру, лесть. Вроде, обыденное понятие. Но когда оно коснется лично тебя, то поневоле начнешь разбираться, это оскорбление или похвала? А для этого ...
далее
Подспудно. Действительное значение устаревшего слова
В нашем языке много слов, значение которых сразу непонятно из-за устаревания тех языковых форм, от которых они были образованы. Поэтому часто приходиться догадываться об их смысле и значении, но это не гарантирует правильность их трактовки. ...
далее
Узнаем как решать алгебраические дроби? Теория и практика
Когда ученик переходит в старшую школу, математика разделяется на 2 предмета: алгебру и геометрию. Понятий становится все больше, задания все сложнее. У некоторых возникают трудности с восприятием дробей. Пропустили первый урок по этой теме - и вуаля! Как решать алгебраические дроби? Вопрос, который будет мучить на протяжении всей школьной жизни.
далее
Узнаем как решать алгебраические дроби? Теория и практика
По какой причине нельзя делить на ноль? Наглядный пример
Еще с начальных школьных лет все мы четко усвоили правило «на ноль делить нельзя». Но если в детстве многое воспринимаешь на веру и слова взрослого редко вызывают сомнения, то со временем иногда хочется все-таки разобраться в причинах, понять, почему были установлены те или иные правила.
далее
По какой причине нельзя делить на ноль? Наглядный пример
Свойства и способы поиска корней квадратного уравнения
Мир устроен так, что решение большого количества задач сводится к вычислению корней квадратного уравнения. Предлагаем ознакомиться с основными закономерностями решения таких уравнений и изучить их разновидности.
далее
Свойства и способы поиска корней квадратного уравнения
Комплексные числа: определение и основные понятия
Неопределенность решения квадратного уравнения на всем поле вещественных числе привела к понятию мнимой единицы. Это дало толчок развитию математики. Алгебра начала оперировать с понятием комплексного числа. Оказалось, что все законы, применимые для вещественных чисел, распространяются на новое понятие множества комплексных чисел. В статье представлены основные понятия и определения по теме.
далее
Комплексные числа: определение и основные понятия
Безукоризненный - это очень хороший или нечто другое?
"Безукоризненный" - это красивое, изысканное слово, которое периодически употребляется в беседах, но немногие задумываются над его истинным определением. Обычно его используют в значении "превосходный" или "прекрасный". Однако такая формулировка не совсем точна.
далее
Безукоризненный - это очень хороший или нечто другое?