Катодная защита: использование и стандарты

Коррозия - это химическая и электрохимическая реакция металла с окружающей средой, вызывающая его повреждение. Она протекает с разной скоростью, которую можно уменьшить. С практической точки зрения интерес представляет антикоррозионная катодная защита металлических сооружений, контактирующих с землей, с водой и с транспортируемыми средами. Особенно повреждаются наружные поверхности труб от влияния грунта и блуждающих токов.

катодная защита

Внутри коррозия зависит от свойств среды. Если это газ, он должен быть тщательно очищен от влаги и агрессивных веществ: сероводорода, кислорода и др.

Принцип работы

Объектами процесса электрохимической коррозии являются среда, металл и границы раздела между ними. Среда, которой обычно является влажный грунт или вода, обладает хорошей электропроводностью. На границе раздела между ней и металлической конструкцией происходит электрохимическая реакция. Если ток положительный (анодный электрод), ионы железа переходят в окружающий раствор, что приводит к потере массы металла. Реакция вызывает коррозию. При отрицательном токе (катодный электрод) этих потерь нет, поскольку в раствор переходят электроны. Способ используется в гальванотехнике для нанесения на сталь покрытий из цветных металлов.


Катодная защита от коррозии осуществляется, когда к объекту из железа подводят отрицательный потенциал.катодная защита от коррозии

Для этого в грунте размещают анодный электрод и подключают к нему положительный потенциал от источника питания. Минус подается на защищаемый объект. Катодно-анодная защита приводит к активному разрушению от коррозии только анодного электрода. Поэтому его следует периодически менять.

Негативное действие электрохимической коррозии

Коррозия конструкций может происходить от действия блуждающих токов, попадающих из других систем. Они полезны для целевых объектов, но наносят существенный вред близкорасположенным сооружениям. Блуждающие токи могут распространяться от рельсов электрифицированного транспорта. Они проходят по направлению к подстанции и попадают на трубопроводы. При выходе из них образуются анодные участки, вызывающие интенсивную коррозию. Для защиты применяют электродренаж - специальный отвод токов от трубопровода к их источнику. Здесь также возможна катодная защита трубопроводов от коррозии. Для этого необходимо знать величину блуждающих токов, которую измеряют специальными приборами. катодная защита трубопроводов от коррозии


По результатам электрических измерений выбирается способ защиты газопровода. Универсальным средством является пассивный способ изоляции труб от контакта с грунтом с помощью изолирующих покрытий. Катодная защита газопровода относится к активному способу.катодная защита газопровода

Защита трубопроводов

Конструкции в земле защищают от коррозии, если подключить к ним минус источника постоянного тока, а плюс - к анодным электродам, закопанным рядом в грунт. Ток пойдет к конструкции, защищая ее от коррозии. Таким образом производится катодная защита трубопроводов, резервуаров или трубопроводов, находящихся в грунте.катодная защита трубопроводов

Анодный электрод будет разрушаться, и его следует периодически менять. Для бака, заполненного водой, электроды размещают внутри. При этом жидкость будет электролитом, через которую ток пойдет от анодов к поверхности емкости. Электроды хорошо контролируются, и их легко заменить. В грунте это делать сложней.


Источник питания

Возле нефте- и газопроводов, в сетях отопления и водоснабжения, для которых необходима катодная защита, устанавливают станции, от которых подается напряжение на объекты. Если они размещаются на открытом воздухе, степень их защиты должна быть не ниже IP34. Для сухих помещений подходит любая.

Станции катодной защиты газопроводов и других крупных сооружений имеют мощность от 1 до 10 кВт.станции катодной защиты газопроводов

Их энергетические параметры прежде всего зависят от следующих факторов:

  • сопротивление между почвой и анодом;
  • электропроводность грунта;
  • длина защитной зоны;
  • изолирующее действие покрытия.

Традиционно преобразователь катодной защиты представляет собой трансформаторную установку. Сейчас на смену ей приходит инверторная, обладающая меньшими габаритами, лучшей стабильностью тока и большей экономичностью. На важных участках устанавливают контроллеры, обладающие функциями регулирования тока и напряжения, выравнивания защитных потенциалов и др.

Оборудование представлено на рынке в различных вариантах. Для конкретных нужд применяется индивидуальное проектирование, обеспечивающее лучшие условия эксплуатации.

Параметры источника тока

Для защиты от коррозии для железа защитный потенциал составляет 0,44 В. На практике он должен быть больше из-за влияния включений и состояния поверхности металла. Максимальная величина составляет 1 В. При наличии покрытий на металле ток между электродами составляет 0,05 мА/м2. Если изоляция нарушится, он возрастает до 10 мА/м2.

Катодная защита эффективна в комплексе с другими способами, поскольку меньше расходуется электроэнергии. Если на поверхности конструкции есть лакокрасочное покрытие, электрохимическим способом защищаются только места, где оно нарушено.

Особенности катодной защиты

  1. Источниками питания служат станции или мобильные генераторы.
  2. Расположение анодных заземлителей зависит от специфики трубопроводов. Способ расстановки может быть распределенным или сосредоточенным, а также располагаться на разной глубине.
  3. Материал анода выбирается с низкой растворимостью, чтобы его хватило на 15 лет.
  4. Потенциал защитного поля для каждого трубопровода рассчитывается. Он не регламентируется, если на конструкциях отсутствуют защитные покрытия.

Стандартные требования "Газпрома" к катодной защите

  • Действие в течение всего срока эксплуатации средств защиты.
  • Защита от атмосферных перенапряжений.
  • Размещение станции в блок-боксах или в отдельно стоящей в антивандальном исполнении.
  • Анодное заземление выбирается на участках с минимальным электрическим сопротивлением грунта.
  • Характеристики преобразователя выбираются с учетом старения защитного покрытия трубопровода.

Протекторная защита

Способ представляет собой вид катодной защиты с подключением электродов из более электроотрицательного металла через электропроводную среду. Отличие заключается в отсутствии источника энергии. Протектор берет коррозию на себя, растворяясь в электропроводной окружающей среде.

Через несколько лет анод следует заменить, поскольку он вырабатывается.

Эффект от анода увеличивается со снижением у него переходного сопротивления со средой. Со временем он может покрываться коррозионным слоем. Это приводит к нарушению электрического контакта. Если поместить анод в смесь солей, обеспечивающую растворение продуктов коррозии, эффективность повышается.

Влияние протектора ограничено. Радиус действия определяется электрическим сопротивлением среды и разностью потенциалов между анодом и катодом.

Протекторная защита применяется при отсутствии источников энергии или когда их использование экономически нецелесообразно. Она также невыгодна при применении в кислых средах из-за высокой скорости растворения анодов. Протекторы устанавливают в воде, в грунте или в нейтральной среде. Аноды из чистых металлов обычно не делают. Растворение цинка происходит неравномерно, магний корродирует слишком быстро, а на алюминии образуется прочная пленка окислов.

Материалы протекторов

Чтобы протекторы обладали необходимыми эксплуатационными свойствами, их изготавливают из сплавов со следующими легирующими добавками.

  • Zn + 0,025-0,15 % Cd+ 0,1-0,5 % Al - защита оборудования, находящегося в морской воде.
  • Al + 8 % Zn +5 % Mg + Cd, In, Gl, Hg, Tl, Mn, Si (доли процента) - эксплуатация сооружений в проточной морской воде.
  • Mg + 5-7 % Al +2-5 % Zn - защита небольших конструкций в грунте или в воде с низкой концентрацией солей.

Неправильное применение некоторых видов протекторов приводит к негативным последствиям. Аноды из магния могут быть причиной растрескивания оборудования из-за развития водородного охрупчивания.

Совместная протекторная катодная защита с антикоррозионными покрытиями повышает ее эффективность.протекторная катодная защита

Распределение защитного тока улучшается, а анодов требуется значительно меньше. Один магниевый анод защищает покрытый битумом трубопровод на длину 8 км, а без покрытия - всего на 30 м.

Защита кузовов автомобилей от коррозии

При нарушении покрытия толщина кузова автомобиля может уменьшиться за 5 лет до 1 мм, т. е. проржаветь насквозь. Восстановление защитного слоя важно, но кроме него есть способ полного прекращения процесса коррозии с помощью катодно-протекторной защиты. Если превратить кузов в катод, коррозия металла прекращается. Анодами могут быть любые токопроводящие поверхности, расположенные рядом: металлические пластины, контур заземления, корпус гаража, влажное дорожное покрытие. При этом эффективность защиты возрастает с ростом площади анодов. Если анодом является дорожное покрытие, для контакта с ним применяется "хвост" из металлизованной резины. Его помещают напротив колес, чтобы лучше попадали брызги. "Хвост" изолируется от корпуса.

К аноду подключается плюс аккумуляторной батареи через резистор 1 кОм и последовательно соединенный с ним светодиод. При замыкании цепи через анод, когда минус соединен с кузовом, в нормальном режиме светодиод еле заметно светится. Если он ярко горит, значит, в цепи произошло короткое замыкание. Причину надо найти и устранить.

Для защиты последовательно в цепи нужно установить предохранитель.

При нахождении автомобиля в гараже его подключают к заземляющему аноду. Во время движения подключение происходит через "хвост".

Заключение

Катодная защита является способом повышения эксплуатационной надежности подземных трубопроводов и других сооружений. При этом следует учитывать ее негативное воздействие на соседние трубопроводы от влияния блуждающих токов.

Электроактиватор воды АП-1: схема, отзывы, инструкция. ...
Электроактиватор воды АП-1 - простой и удобный в использовании прибор для получения положительно и отрицательно заряженных водных растворов. Но это скучное название, и не объясняет оно ничего. То ли дело - "живая" и "мертвая" ...
далее
Питтинговая коррозия: возможные причины. Методы защиты металлов от ...
В процессе эксплуатации металлических изделий они подвергаются разрушающим воздействиям различных видов и типов, среди которых выделяется питтинговая коррозия как наиболее опасная и непредсказуемая.
далее
Охранная система Аркан: краткое описание, характеристики, отзывы
Одной из самых надежных систем, которые помогают спасти ваше имущество от угрозы, является охранная система «Аркан». Современный рынок предлагает широкий выбор различных систем. Отличительной особенностью этой системы считается то, что это ...
далее
Установка молниезащиты: пошаговая инструкция, технология и ...
Монтаж молниезащиты, как правило, осуществляется на рубероиде или деревянной обрешетке, однако данный подход нельзя назвать безопасным. Случалось и так, что молния попадала на отдельные элементы кровли, становясь причиной оплавления и пожара, ...
далее
Коррозия металлов - процесс их разрушения
Почвенно-грунтовая коррозия металлов - электрохимический процесс, зависящий от таких факторов, как химический состав грунтов, их влажность и воздухопроницаемость, вида металла, его однородности, характера поверхности металлических предметов.
далее
Вольфрамовые электроды для сварки: типы, маркировка
Особенности вольфрамовых электродов для сварки. Физико-химический состав вольфрамовых электродов. Маркировка вольфрамовых изделий по цвету наконечника. Особенности заточки наконечников вольфрамовых электродов. К чему приводят дефекты при заточке стержней.
далее
Вольфрамовые электроды для сварки: типы, маркировка
Цинкование холодное сделать самому своими руками
Коррозия железа происходит при его взаимодействии с кислородом воздуха. Чтобы избежать этого и продлить срок службы изделия в несколько раз, необходимо провести комплекс защитных мер.
далее
Цинкование холодное сделать самому своими руками
Источники тока химические. Виды химических источников тока и их устройство
Источники тока химические (сокращенно ХИТ) — приспособления, в которых энергия окислительно-восстановительной химической реакции преобразуется в электрическую. Другие их названия — электрохимический элемент, гальванический элемент, электрохимическая ячейка.
далее
Источники тока химические. Виды химических источников тока и их устройство