Донорно-акцепторный механизм: примеры, описание

Химической связью называется связь двух и более атомов (молекул) в органическом или неорганическом соединении. Она образуется при условии уменьшения общей энергии в системе.
Все ли элементы могут образовывать химические связи
Все элементы периодической системы имеют разную способность к образованию связи. Наиболее устойчивыми и, как результат, химически малоактивными являются атомы благородных (инертных) газов, так как содержат на внешней электронной оболочке два или восемь электронов. Они образуют небольшое количество связей. К примеру, неон, гелий и аргон не образуют химических связей ни с одним элементом, тогда как ксенон, криптон и радон способны реагировать с фтором и молекулами воды.
У атомов других элементов внешние уровни не завершены и имеют от одного до семи электронов, поэтому для повышения устойчивости оболочки образуют химические связи.
Типы химической связи
Выделяют несколько типов связи:
- Ковалентная.
- Ионная.
- Металлическая.
- Водородная.
Ковалентная связь
Данный тип связи формируется между атомами в молекуле в результате обобществления или перекрытия валентной электронной пары. Соответственно, существует обменный (а) и донорно-акцепторный (б) механизмы образования ковалентной связи. Отдельным случаем является дативная связь, которая будет рассмотрена ниже.
Ковалентная связь: обменный механизм
У атомов на внешнем уровне есть неспаренные электроны. При взаимодействии внешние оболочки перекрываются. Антипараллельные спины одиночных электронов, содержащихся на внешних уровнях, спариваются с образованием электронной пары, общей для обоих атомов. Данная пара электронов представляет, собственно, ковалентную связь, которая образована по обменному механизму, к примеру, в молекуле водорода.
Ковалентная связь: донорно-акцепторный механизм
Данный механизм заключается в обобществлении двумя атомами двух находящихся на внешнем уровне электронов. При этом один из атомов выступает в качестве донора (предоставляет два электрона), а другой - акцептора (имеет вакантную орбиталь для электронов). Атомы s- и p-элементов могут быть либо акцепторами, либо донорами электронов. Атомы d-элементов способны быть и донорами, и акцепторами.
Чтобы понять, что такое донорно-акцепторный механизм, рассмотрим два простейших примера - образование катионов гидроксония H3O+ и аммония NH4+.
Пример донорно-акцепторного механизма - катион аммония
Схематически реакция образования частицы аммония выглядит следующим образом:
NH3+H+=NH4+
Электроны в атоме N распределены в следующем порядке: 1s2 2s2 2p3.
Электронная структура катиона H: 1s0.
Атом азота на внешнем уровне содержит два s- и три p-электрона. Три p-электрона участвуют в образовании трех ковалентных обменного типа связей азот-водород N-H. В результате этого образуется молекула аммиака NH3 с ковалентным типом связи. Поскольку атом азота N на внешнем уровне имеет еще пару электронов s, молекула NH3 может присоединить еще и катион водорода. Молекула аммиака является донором, а катион водорода H+ – акцептором, который принимает донорские электроны от азота на собственную свободную s-орбиталь.
Пример донорно-акцепторного механизма – H3O (ион гидроксония)
Электроны в атоме кислорода распределены в следующем порядке: 1s2 2s2 2p4.
Атом кислорода на внешнем уровне имеет два s и четыре p-электрона. Исходя из этого, в образовании связей H-O принимают участие два свободных p-электрона и два s-электрона от двух атомов H. То есть 2 имеющиеся связи в молекуле H2O – ковалентные, образованные по обменному механизму.
Электронная структура катиона водорода: 1s0.
Так как у атома кислорода на внешнем уровне остались еще два электрона (s-типа), он может образовать третью связь ковалентного типа по донорно-акцепторному механизму. Акцептором может быть атом, имеющий свободную орбиталь, в данном примере это частица H+. Свободную s-орбиталь катиона H+ занимают два электрона (s) атома кислорода.
Донорно-акцепторный механизм образования ковалентной связи между неорганическими молекулами
Донорно-акцепторный механизм ковалентной связи возможен не только во взаимодействиях типа «атом-атом» или «молекула-атом», но и в реакциях, протекающих между молекулами. Единственным условием для донорно-акцепторного взаимодействия кинетически независимых молекул является уменьшение энтропии, другими словами, повышение упорядоченности химической структуры.
Рассмотрим первый пример - образование апротонной кислоты (кислоты Льюиса) NH3BF3. Данный неорганический комплекс образуется в реакции присоединения молекулы аммиака и фторида бора.
NH3+BF3= NH3BF3
Электроны в атоме бора распределены в следующем порядке: 1s2 2s2 2p1.
При возбуждении атома B один электрон s-типа переходит на p-подуровень (1s2 2s1 2p2). Таким образом, на внешнем уровне возбужденного атома бора находится два s- и два p-электрона.
В молекуле BF3 три ковалентные связи бор-фтор B-F образованы обменного типа (атомы бора и фтора предоставляют по одному электрону). После образования трех ковалентных связей у атома бора на внешней электронной оболочке остается свободный p-подуровень, за счет которого молекула фторида бора может выступать акцептором электронов.
Электроны в атоме азота распределены в следующем порядке:1s2 2s2 2p3.
По три электрона от атомов N и H участвуют в формировании связи азот-водород. После этого у азота остается еще два электрона s-типа, которые он может предоставить для образования связи по донорно-акцепторному механизму.
В реакции взаимодействия трифторида бора и аммиака молекула NH3 играет роль донора электронов, а молекула BF3 – акцептора. Пара электронов азота занимает свободную орбиталь фторида бора и образуется химическое соединение NH3BF3.
Другой пример механизма образования донорно-акцепторной связи - получение полимера фторида бериллия.
Схематически реакция выглядит следующим образом:
BeF2+BeF2+…+BeF2->(BeF2)n
Электроны в атоме Be расположены так - 1s2 2s2, а в атоме F - 1s2 2s2 2p5.
Две связи бериллий-фтор в молекуле фторида бериллия ковалентные обменного типа (участвуют два p-электрона от двух атомов фтора и два электрона s-подуровня атома бериллия).
Между парой атомов бериллия (Be) и фтора (F) формируются еще две ковалентные связи по донорно-акцепторному механизму. В полимере фторида бериллия атом фтора - это донор электронов, атом бериллия – их акцептор, имеющий вакантную орбиталь.
Донорно-акцепторный механизм образования ковалентной связи между органическими молекулами
Когда происходит формирование связи по рассматриваемому механизму между молекулами органической природы, образуются более сложные соединения - комплексы. В любом органическом соединении с ковалентной связью содержатся как занятые (несвязывающие и связывающие), так и пустые орбитали (разрыхляющие и несвязывающие). Возможность донорно-акцепторного образования комплексов определяется степенью устойчивости комплекса, которая зависит от прочности связи.
Рассмотрим пример - реакция взаимодействия молекулы метиламина с соляной кислотой с образованием хлорида метиламмония. В молекуле метиламина все связи ковалентные, образованные по обменному механизму – две связи H-N и одна связь N-CH3. После соединения с водородом и метильной группой у атома азота есть еще пара электронов s-типа. Являясь донором, он предоставляет эту электронную пару для атома водорода (акцептор), у которого есть свободная орбиталь.
Донорно-акцепторный механизм без формирования химической связи
Не во всех случаях донорно-акцепторного взаимодействия происходит обобществление электронной пары и образование связи. Некоторые органические соединения могут объединяться между собой за счет перекрывания заполненной орбитали донора с пустой орбиталью акцептора. Происходит перенос заряда – электроны делокализуются между акцептором и донором, расположенными очень близко друг к другу. Образуются комплексные соединения с переносом заряда (КПЗ).
Такое взаимодействие характерно для пи-систем, орбитали которых легко перекрываются, а электроны легко поляризуются. В роли доноров могут выступать металлоцены, ненасыщенные аминосоединения, ТДАЭ (тетракис(диметиламино)этилен). Акцепторами зачастую являются фуллерены, хинодиметаны, имеющие акцепторные заместители.
Перенос заряда может быть как частичным, так и полным. Полный перенос заряда происходит при фотовозбуждении молекулы. При этом образуется комплекс, который можно наблюдать спектрально.
Независимо от полноты переноса заряда, такие комплексы неустойчивы. Для повышения прочности и времени жизни такого состояния дополнительно внедряют мостиковую группу. В результате этого донорно-акцепторные системы успешно используются в устройствах преобразования солнечной энергии.
В некоторых органических молекулах связь по донорно-акцепторному механизму формируется внутри молекулы между донорной и акцепторной группой. Такой тип взаимодействия носит название трансаннулярного эффекта, характерного, к примеру, для атранов (элементоорганические соединения со связями N->B, N->Si).
Семиполярная связь, или Дативный механизм образования связи
Кроме обменного и донорно-акцепторного существует третий механизм – дативный (другие названия – семиполярная, полуполярная или координационная связь). Атом-донор отдает пару электронов на свободную орбиталь нейтрального атома, которому необходимы два электрона, чтобы завершить внешний уровень. Происходит своеобразный переход электронной плотности от акцептора к донору. При этом донор становится положительно заряженным (катион), а акцептор – отрицательно заряженным (анион).
Собственно химическая связь формируется за счет связывающей оболочки (перекрывания двух спаренных электронов одного из атомов внешней свободной орбиталью другого) и электростатической притяжения, возникающего между катионом и анионом. Таким образом, в семиполярной связи сочетаются ковалентный и ионный типы. Полуполярная связь характерна для d-элементов, которые в разных соединениях могут играть роли и акцептора, и донора. В большинстве случаев она встречается в комплексных и органических веществах.
Примеры дативной связи
Самый простой пример – молекула хлора. Один атом Cl отдает пару электронов другому атому хлора, у которого есть свободная d-орбиталь. При этом один атом Cl заряжается положительно, другой – отрицательно, и между ними возникает электростатическое притяжение. Из-за большой длины дативная связь имеет меньшую прочность в сравнении с ковалентной обменного и донорно-акцепторного типа, но ее наличие повышает прочность молекулы хлора. Именно поэтому молекула Cl2 более прочна, чем F2 (у атома фтора нет d-орбиталей, связь фтор-фтор только ковалентная обменная).
Молекула монооксида углерода CO (угарный газ) образована за счет трех связей C-O. Поскольку у атомов кислорода и углерода на внешнем уровне имеется по два одиночных электрона, между ними формируется две ковалентные обменные связи. После этого у атома углерода остается вакантная орбиталь, у атома O - две пары электронов на внешнем уровне. Поэтому в молекуле монооксида углерода (II) есть третья связь – семиполярная, формирующаяся за счет двух валентных спаренных электронов кислорода и свободной орбитали углерода.
Рассмотрим более сложный пример - образование данного вида связи на примере взаимодействия диметилового эфира (Н3С-О-СН3) с хлоридом алюминия AlCl3. Атом кислорода в диметиловом эфире связан двумя ковалентными связями с метильными группами. После этого у него остается еще два электрона на p-подуровне, которые он отдает атому-акцептору (алюминий) и становится положительным катионом. При этом атом-акцептор приобретает отрицательный заряд (превращается в анион). Катион и анион электростатически взаимодействуют друг с другом.
Значение донорно-акцепторной связи
Механизм образования донорно-акцепторной связи имеет важное значение в жизни человека и широко распространен в химических соединениях как органической, так и неорганической природы, что подтверждают рассмотренные выше примеры. Нашатырный спирт, в составе которого есть катион аммония, успешно применяется в быту, медицине и промышленном производстве удобрений. Ион гидроксония играет главную роль в растворении кислот в воде. Угарный газ применяется в промышленности (например, при производстве удобрений, лазерных систем) и имеет огромное значение в физиологических системах организма человека.