Узнаем как рассчитать длину окружности, если не указан диаметр и радиус круга

Перед нами стоит вопрос: «Как рассчитать длину окружности?» Как рассчитать длину окружностиОдной линейкой здесь не обойтись, необходимо знать специальные формулы. Единственное, что от нас потребуется - это определить диаметр или радиус круга. В некоторых задачах эти величины обозначены. Но что делать, если у нас нет ничего, кроме рисунка? Не беда. Диаметр и радиус можно вычислить с помощью обычной линейки. Теперь приступим к самому основному.

Формулы, которые должен знать каждый

Еще в Древнем Вавилоне, почти 4 000 лет назад, учёные выявили удивительное соотношение: если длину окружности разделить на ее диаметр, то получается одно и то же число, которое равно примерно 3,14. Это значение назвали числом "Пи", именно с этой буквы в древнегреческом языке начиналось слово «периметр» и «окружность». На основании того открытия, которое совершили древние ученые, можно рассчитать длину любой окружности:


P = d П

Где P означает длину (периметр) окружности,длина окружности круга d – диаметр, П - число "Пи".

Длина окружности круга может также быть посчитана через ее радиус (r), который равен половине длины диаметра. Вот и вторая формула, которую нужно запомнить:

P = 2r П

Как узнать диаметр окружности?

Диаметр окружности представляет собой хорду, которая проходит через центр фигуры. При этом она соединяет две наиболее удалённые точки в круге. Исходя из этого, можно самостоятельно прочертить диаметр (радиус) и измерить его длину с помощью линейки.

Способ 1: вписываем прямоугольный треугольник в круг

Рассчитать длину окружности

Рассчитать длину окружности будет несложно, если мы найдем ее диаметр. Необходимо начертить в круге прямоугольный треугольник, где гипотенуза будет равна диаметру окружности. Для этого необходимо иметь под рукой линейку и угольник, иначе ничего не получится.


Способ 2: вписываем любой треугольник

На стороне круга отмечаем три любые точки, соединяем их – получаем треугольник. Важно, чтобы центр окружности лежал в области треугольника, это можно сделать на глаз. Проводим к каждой стороне треугольника медианы, точка их пересечения совпадёт с центром окружности. А когда нам известен центр, можно с помощью линейки легко провести диаметр.

Способ 3: как рассчитать длину окружности подручными средствами

Данный способ очень похож на первый, но может применяться при отсутствии угольника или в тех случаях, когда нет возможности чертить на фигуре, например на тарелке. Необходимо взять лист бумаги с прямыми углами. Прикладываем лист к кругу так, чтобы одна вершина его угла соприкасалась с краем круга. Далее отмечаем точками места, где стороны бумаги пересекаются с линией окружности. Соединяем эти точки с помощью карандаша и линейки. Если под рукой ничего нет, просто согните бумагу. Эта линия и будет равна длине диаметра.

Пример задачи

Перед нами задача: как рассчитать длину окружности, если не даны никакие цифровые значения, кроме самого круга. Запоминаем алгоритм:

  1. Ищем диаметр с помощью угольника, линейки и карандаша по способу № 1. Предположим, получилось 5 см.
  2. Зная диаметр, мы легко можем его вставить в нашу формулу: P = d П = 3,14 = 15,7  В нашем случае получилось около 15,7. Теперь вы без особых проблем сможете объяснить, как рассчитать длину окружности. 

Узнаем как вычислить диаметр окружности?
Чем отличается круг от окружности? По каким параметрам определяется размер окружности? Как вычислить диаметр окружности? Ответы на все эти вопросы даны в следующей статье. Также представлены самые известные формулы для вычисления диаметра окружности.
далее
Узнаем как рассчитывается длина окружности
Эта статья для тех, кому необходимо узнать, чему равна длина окружности. Здесь вы найдете формулы и небольшое объяснение по теме.
далее
Длина хорды: основные понятия
Бывают случаи в жизни, когда знания, полученные во время школьного обучения, очень полезны. Хотя во время учебы эти сведения казались скучными и ненужными. Например, как можно использовать информацию о том, как находится длина хорды?
далее
Что это - окружность и круг, в чем их отличия и примеры данных фигур ...
Школьная пора для большинства взрослых людей ассоциируется с беззаботным детством. Конечно, многие неохотно посещают школу, но только там они могут получить базовые знания, которые впоследствии пригодятся им в жизни. Одним из таких является вопрос о ...
далее

Материалы по теме: