Экономико-математические способы и модели

 

Все модели, которые человек использует в различных сферах своей деятельности, условно можно поделить на две группы: материальные и абстрактные. Первые являются объективными, их можно реально потрогать руками. Вторые же существуют только в человеческом сознании. В рамках данной статьи будут рассмотрены лишь математические методы и модели в экономике. Они применяются для анализа процессов и явлений, происходящих в этой сфере. Их использование позволяет ставить новые экономические задачи. Благодаря ним руководство принимает решения, касающиеся управления организацией, фирмой, предприятием.

Математические методы исследования операций в экономике являются самым эффективным инструментом изучения проблем в данной области. В современной научной и технической деятельности они становятся немаловажной формой моделирования. А в практике планирования и управления этот способ – основной.


Экономико-математические методы и модели являются той базой, на основе которой реализуются различные программы, изначально предназначенные для решения задач планирования, анализа и управления. Вместе с техническими средствами, с базами данных они входят в состав человеко-машинной системы. Она позволяет использовать модели и знания для решения разного рода проблем (как неконструктурированных, так и слабоконструктурированных).

В зависимости от критериев, которые лежат в основе деления, экономико-математические методы и модели классифицируются следующим образом.

1. По цели они бывают:

- прикладные, то есть с их помощью решаются конкретные задачи;

- теоретико-аналитические (они применяются, когда нужно исследовать общие закономерности и признаки развития процессов, происходящих в экономике).

2. По тому, какие причинно-следственные связи они отражают:

- детерминированные;

- вероятностные (учитывают фактор возникающей неопределенности).

3.По уровню тех процессов в экономике, которые они исследуют:

- производственные и технологические;

- социально-экономические.

4. По тому способу, которым отражается фактор времени:

- динамические, по ним видны происходящие изменения;

- статические, все зависимости здесь отражают лишь один период времени или момент.

5. По уровню детализации:

- макромодели (агрегированные);

- микромодели (детализированные).

6. По форме, в которой выражаются математические зависимости:

- нелинейные;

- линейные – их очень удобно использовать для вычисления и анализа, что привело к их более широкому распространению.

Экономико-математические методы и модели имеют и свои принципы построения. К ним относятся:

1. Принцип однозначности данных. Согласно ему информация, которая используется в начале моделирования, не должна зависеть от тех параметров будущей системы, которые на данном этапе исследования еще даже неизвестны.


2. Принцип полноты первоначальных сведений. Он означает, что используемая исходная информация должна быть очень точной, так как от нее зависят полученные результаты.

3. Принцип преемственности. Он говорит о том, что те признаки объекта, которые были отражены или установлены в первых моделях, должны сохраняться и в каждой последующей.

4. Принцип эффективной реализации. Каждая модель должна использоваться на практике. В ее реализации должны помогать новейшие вычислительные средства.

Экономико-математические методы и модели всегда строятся в несколько этапов:

1) Определение проблемы, ее анализ.

2) Конструирование математической модели. Это ее выражение в виде функций, схем, уравнений.

3) Анализ полученной модели с помощью математических приемов.

4) Подготовка первоначальной информации.

5) Это уже собственно разработка программ, составление алгоритмов и проведение расчетов.

6) Анализ полученных результатов, их практическое применение.

Каждый из этих этапов может иметь свою специфику в зависимости от рассматриваемой области знаний.

 

Классификация моделей управления. Классификация экономико-математических моделей
Рассмотрим классификацию моделей управления, их особенности, принцип построения, специфику применения.
далее
Классификация моделей управления. Классификация экономико-математических моделей
Межотраслевой баланс. Модель межотраслевого баланса. Задача межотраслевого баланса
О планировании сказано достаточно. Независимо от нашего отношения к этому процессу, мы все время сталкиваемся с необходимостью сопоставлять свои силы со своими желаниями. И если в жизни одного-двух человек можно и ошибиться с планами, то на экономике государства, а то и целого союза держав, неверно соотнесенные затраты с прибылью могут сказаться катастрофически. Поэтому в современной экономике межотраслевой баланс со своей детализацией производства товаров и услуг занимает ведущее место.
далее
Межотраслевой баланс. Модель межотраслевого баланса. Задача межотраслевого баланса
Этапы моделирования в математике, экономике и информатике
Моделирование позволяет изучать труднодоступные объекты, явления. Проанализируем особенности математического моделирования.
далее
Этапы моделирования в математике, экономике и информатике